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We give a brief introduction to chaos and its characterization. We examine some 
standard systems in detail from the perspective of chaos and review their 
properties. Concepts necessary to understand them, such as dimension, are also 
reviewed. To illustrate the main ideas, We choose three examples which have 
served as paradigms for the study of chaos in physical systems, namely, the 
Hrnon discrete mapping, the Lorenz system of coupled ordinary differential 
equations, and the Mackey-Glass infinite-dimensional delay differential 
equation. 

1. I N T R O D U C T I O N  

In recent  years  a field o f  s tudy  has  d e v e l o p e d  which  we now call  chaos. 

This p a p e r  is an i n t roduc t i on  to  this field o f  s tudy.  I t  is a review ar t ic le  

which  is des igned  to acqua in t  scient is ts  and  engineers  wi th  recent  deve lop-  
men t s  in the  a rea  o f  the  characterizat ion o f  chaos. N o  a t t e mp t  is m a d e  to 
a s semble  a c o m p l e t e  b ib l i og raphy ,  as the  review is p e d a g o g i c a l l y  mo t iva t ed  
a n d  reflects the  au tho r s '  view o f  the  recent  h is tory  o f  the  field. We restr ict  
ou r  d i scuss ion  to chaos  and  its cha rac t e r i za t ion  and  me n t ion  very l i t t le  
a b o u t  the rou tes  to chaos ,  as these  are  ex tens ive ly  r ev iewed  e l sewhere  
(Cvi tanovic ,  1989; H a o  Bai- l in,  1984). A more  c o m p l e t e  i n t roduc t i on  to the 
who le  a rea  is p r o v i d e d  by  the repr in t  co l lec t ions  o f  Cv i t anov ic  (1989), H a o  
Bai -Lin  (1984), the  b o o k s  o f  Schus te r  (1988) a n d  Berg6 et al. (1987), and  
the review ar t ic le  o f  E c k m a n n  and  Ruel le  (1985). 
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2. SENSITIVE DEPENDENCE ON INITIAL CONDITIONS 

We will limit our discussion to differentiable dynamical systems defined 
by the equation 

dx 
dt F(x)  (continuous time t) 

or by the map 

Xn+l =f(x~) (discrete time) 

where x(t)  is a vector in finite- or infinite-dimensional space and F and f 
are differentiable autonomous (i.e., have no explicit time dependence) 
functions. 

We have a sensitive dependence on initial conditions if for a small 
change 8x(0) in the initial conditions there is an exponential growth in the 
separation of the points, i.e., 

I x(t)l-  I O )te (1) 

where A > 0. "Chaos is the prevalence of sensitive dependence on initial 
conditions, whatever the initial condition is" (Ruelle, 1990). As pointed out 
by Ruelle (1990), it was Hadamard (1898) who first observed this sensitive 
dependence on initial conditions in a special system and Duhem (1906) 
and Poincar6 (1908) who first realized that for a system such as that studied 
by Hadamard one could not make long-term predictions. Mathematicians, 
after a considerable lapse of time, following the ideas of Hadamard have 
now proved the existence of chaos in a number of systems (Smale, 1967; 
Ruelle, 1990). However, it has been the advent of computers and the work 
of Lorenz (1963), Feigenbaum (1978, 1979), Ruelle and Takens (1971), and 
others (Cvitanovic, 1989; Hao Bai-lin, 1984) which has revolutionized the 
whole area of nonlinear dynamics and brought the new science of chaos 
to a wide audience. 

3. STRANGE ATTRACTORS 

In what follows we will restrict our discussion to dissipative dynamical 
systems. There are a number of attractors possible in such systems, for 
example, fixed points, limit cycles, two tori, and strange attractors. A strange 
attractor is an attractor with sensitivity to initial conditions. Strange attrac- 
tors are in general low-dimensional. They may or may not be self-similar 
and have a noninteger dimension. We examine some standard systems in 
detail from the perspective of chaos and review their properties. Concepts 
necessary to understand them, such as dimension, are also reviewed. To 
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illustrate the main ideas, we choose three systems which have served as 
paradigms for the study of chaos in physical systems, namely the H6non 
discrete mapping, the Lorenz system of coupled ordinary differential 
equations, and the Mackey-Glass infinite-dimensional delay differential 
equation. These systems are interesting in themselves and are not yet fully 
understood. By their study we hope to illustrate some of the exciting 
quantitative science that has evolved over the last 20 years and which has 
contributed so much to our understanding of chaos and given us a funda- 
mentally new perspective on the whole area of nonlinear dynamics. 

4. HI~NON MAP 

In this section we will examine the dynamical behavior of the well- 
known quadratic, two-dimensional invertible map introduced by H6non 
(1976): 

Xi+l = 1 + Yi - aX2i 
(2) 

Y/+I : bXi 

where a and b are constants, a > 0 and 0 < b < 1. Starting with an initial 
point (Xo, Yo), we calculate (X1, Y1) and the Succeeding points by iteration. 
The two fixed points (X*, Y*) are obtained by setting Xi+~ =Xi and 
Y,+I = Y, and are given by 

(X*, Y*)=(  (b-1)+[(b2-1)+4a]l/22a , bX*) 

In the following we fix b = 0.3 and investigate the stability of the fixed 
points as the parameter a is varied. The stability is determined from the 
eigenvalues given by 

A:~ = -aX* + [a2X*2 + b] 1/2 (3) 

The fixed point (X_, Y_) is always unstable, whereas (X+, Y+) undergoes 
a flip bifurcation (A= 1) when a~>3/4(1-b)2=0.3675. At aa both fixed 
points are unstable; hence there is a bifurcation from an attractor of period 
1 to an attractor of period 2. As a is increased, successive bifurcations 
occur, until there is an infinite periodic attractor at a~. This is clearly 
represented in the bifurcation diagram of Figure 1 for the parameter range 
0.85 < a < 1.40, where period-two and subsequent bifurcations are shown. 

As a approaches a~ the sequence of bifurcations a, gets rapidly 
narrower. Feigenbaum (1978), using the renormalization group techniques 
developed by K. Wilson (Wilson and Kogut, 1974), analyzed similar sequen- 
ces at which period doubling occurs and found that the convergence rate 
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Fig. 1. Bifurcation diagram of the H6non map in the parameter range b=0 .3  and 
0.85 < a < 1.40. 

is given by 

an  - -  a n _  1 
6 = lim - 4.6692016 

n~o~ a n + l  - -  an  

Feigenbaum's constant ~ is universal for all maps with quadratic maxima. 
Of particular interest is the behavior of this system for a >  ao~ 

(-- 1.0580...). The parameter chosen by H6non was a = 1.4. For this para- 
meter we have generated a sequence of points from the mapping equation 
(2). A plot of its phase space (Xi vs. Y~) is shown in Figure 2a. As time 
evolves, the sequence of data X~, Y~ fall randomly on this chaotic attractor. 
As yet there is no rigorous mathematical proof  that this is a strange attractor 
despite the extreme simplicity of the two-dimensional mapping. Figure 2b 
is a magnified view of the small square in Figure 2a and the enlargement 
shows that each of these lines is in fact composed of more than one line. 
Successive enlargements in Figures 2c and 2d reveal more line structure. 
These figures strongly suggest that structure is present at all scales of 
resolution. 

The Jacobian of the H6non map given by equation (1) is 

 Xo+l/ Xn  xo+l/ Yo __l-2aX. 1 = _  b J(X,, Y,)= 
I 0 6Y,+a/aX, 6Y,+,/3Y, b 

For b < 1 the map is area-contracting, i.e., the modulus of the Jacobian 
determinant is less than unity. Each iteration multiplies the area by a factor 
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Fig. 2. Self-similarity in the H6non attractor. (a) H6non  at tractor at a = 1.4, b = 0.3. (b -d )  
Successive enlargements  o f  the square  in (a). 

b. Hence all the attractors of this system, including the strange attractor in 
Figure 2a, have a contracting phase space area. 

5. THE STRANGE ATTRACTOR OF LORENZ 

Lorenz (1963) observed chaotic behavior in a system of three first- 
order ordinary differential equation. These quadratic, nonlinear differential 
equations have the form 

dX(t) 
~ ( x -  Y) 

dt 

dY(t)  
- -  = - Y -  X Z  + r X  (4) 

dt 

dZ(t) 
- X Y -  bZ 

dt 
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Lorenz obtained this system of equations from a Fourier modal decomposi- 
tion of a set of partial differential equations describing a viscous, thermal 
conducting fluid heated from below (Rayleigh-B6nard problem), tr, r, and 
b are constants greater than zero. Haken (1978) showed that the same 
equations describe a single-mode homogeneously broadened laser. In order 
to examine the time evolution of the variables X(t) ,  Y(t),  and Z(t),  it is 
necessary to integrate the coupled equations (4) numerically by routine 
computer algorithms since these equations cannot be solved analytically. 

The fixed points are obtained by setting the derivatives equal to zero: 

X * =  Y * = Z * = 0  

x *  = Y *  = [ b ( r  - 1 ) ]  ' /2 ,  Z *  = r - 1 ( 5 )  

X* = Y* = - [ b ( r - 1 ) ]  1/2, Z * =  r - 1  

The stability of these fixed points is determined by linearizing the right-hand 
side of equation (4) and finding the eigenvalues A of 

( - ~ - A  ~ 0 ) 

det r - Z *  - 1 - X  - X *  (6) 

\ Y* X* - b - h  

For the fixed point (0, 0, 0) the eigenvalues of this 3 • 3 matrix are 

'~1 = - b  
( 7 )  

h2,3 = -�89 + 1) • �89 - 1) 2 -4o7] 1/2 

When r < 1 there is only one fixed point, the origin, and its eigenvalue is 
negative, hence the origin is an stable attractor. When r > 1 the origin is no 
longer attracting, but we have two additional fixed points and their stability 
is determined from the following conditions: 

c r > b + l  and r>-o ' (o '+b+3) / (o ' -b-1)  (8) 

Choosing o- = 3 and b = 1, we find that the two fixed points are no longer 
attracting for r -  21. If  we numerically integrate the Lorenz equations with 
r = 5, the origin is unstable but the other two fixed points are stable and 
the solution converges onto one of these simple fixed-point attractors as 
shown in Figure 3a. The corresponding phase plot in Figure 3b, is a point 
after initial transients have decayed. Which of the two fixed points it 
converges to depends on the initial condition used to obtain the solution 
of the Lorenz equation. At r = 21 all three fixed points are unstable. A Hopf  
bifurcation occurs, i.e., the imaginary part of the eigenvalue takes on a 
positive real part. 
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Fig. 3. Graphical  solut ions for the Lorenz system of  equat ion (4). Left-hand side: the t ime 
evolut ion Z(t) vs. t; r ight-hand side: X(t) vs. Z(t), for cr = 3, b = 1, and (a, b) r = 5.0; (c, d) 
r = 21.0; (e, f) r = 280.0 

When all fixed points of  a system are unstable we can get chaotic 
behavior. As an example we have integrated the Lorenz equations for r = 2L 
The time evolution [Z( t )  vs. t] and a phase space plot [X( t )  vs. Z ( t ) ]  for 
r = 21 are shown in Figures 3c and 3d, respectively. As the phase space plot 
evolves with time, the trajectory Z(t) appears to switch from the neighbor- 
hood of one of  the (unstable) fixed points to the other in an apparently 
random fashion. 

For very large r, nearly all trajectories are attracted to stable limit 
cycles. An example of  one of these limit cycles is shown in Figure 3f for 
r = 280. Once initial transients have decayed, the time evolution of Z(t) in 
Figure 3e is periodic. 
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Figure 4 shows the power spectrum of  the Lorenz strange attractor at 
r = 21. The power spectrum was obtained with a FFT algorithm after initial 
transients have decayed away. We see the characteristic broadband spectrum 
of  chaos. This type of  spectrum is typical of chaotic systems. 

An informative illustration of  the sensitive dependence on initial condi- 
tions for the Lorenz system is shown in Figure 5 (Crutchfield et al., 1986). 
Lorenz equations are numerically integrated 1000 times with 1000 slightly 
different initial conditions (i.e., seed values). These 1000 initial measure- 
ments are represented by a dot in Figure 5a, initially so close that they are 
indistinguishable. As each point moves under the action of  equation (4) 
the indistinguishable points at time t = 0 have spread over the entire attractor 
at t = 60 as shown in Figure 5d. Prediction has now become impossible, 
the final state can be anywhere on the attractor. Such a degree of  sensitivity 
on initial conditions is never exhibited for regular periodic systems. This 
exponential divergence of nearby trajectories (or initial measurements) is 
the underlying reason why chaos leads to unpredictability. 

Using the Lie derivative, we can calculate the contraction of the volume 
in phase space of  the Lorenz system given by equation (4), i.e., 

a~r a?  az 
- - +  + - - = - ( r + b + l ) = - 5  
~X 8Y ~Z 

This system is highly dissipative with a contraction rate of  exp( -5) .  As 
phase space evolves in time according to equation (4), the enclosed volume 
contracts exponentially. 

:r 

EL 

C> 
' r  

0 
r---I 

0 . 0 0 0 6  
W 

2 . 4 9 9 4  

Fig. 4. Power spectrum for the Lorenz strange attractor at r = 21. This spectrum is obtained 
from the average of  80 individual FFTs each of sample length 8192 taken at intervals At = 0.2. 
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Fig. 5. An illustration of the divergence of initial measurements. Time evolution of the initial 
conditions at different times t: (a) 0, (b) 20, (c) 40, and (d) 60. For reference the Lorenz 
attractor is shown in the background. 

6. DELAY DIFFERENTIAL E Q U A T I O N S  

Delay differential equations provide an exciting testing ground for 
many  of  the mathematical ly untested conjectures of  chaos and its charac- 
terization. In this section we will examine the dynamical  behavior  of  an 
infinite-dimensional system which consists of  a first-order nonlinear 
differential equation with a time delay: 

d X ( t )  
. . . . . .  f ( X ( t ) , X ( t - 7 ) )  

dt 

Nonlinear  t ime delay equations have been used to describe optical systems 
that exhibit bistability ( H o p f  et al. 1986; Vall6e et al., 1986) and to model 
isolated populat ions (de Oliveira and Malta, 1987). A very thorough investi- 
gation has been carried out by Farmer  (1982) on the following nonlinear 
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delay equation: 

dX(t)  aX( t  - z) 
- -  - b x ( t )  

dt l + X ( t - z )  c 

This equation is due to Mackey and Glass (1977) and is a model  for b lood 
product ion in patients with leukemia. To calculate X ( t )  numerically for a 
t ime greater than t, a function X ( t )  over the interval (t, t -  ~') must be given. 
Thus, equations of  this type are infinite-dimensional and can display chaotic 
behavior  since their topological phase space dimension is greater than three, 
the minimum dimension required, since chaos in two-dimensional  con- 
tinuous systems is forbidden by the Poincar6-Bendixson theorem (Hirsch 
and Smale, 1965). For the parameters  a, b, and c equal to 0.1, 0.2, and 10, 
respectively) chaotic solutions are observed as the delay parameter  T is 
varied. 

The fixed point X* of  the system is obtained by setting dX/d t  = 0 and 
X*  = X ( t )  = X ( t  - ~'). A linear stability analysis shows that this fixed point 
is stable for z < 4.53. The solution becomes unstable via a H o p f  bifurcation 
as r is increased (Marsden and McCracken,  1976). For  4.53 < 7-< 13.3 
numerical simulation shows that there is a stable limit cycle attractor. At 
z = 13.3 the period of  this limit cycle doubles, initiating a period-doubling 
bifurcation sequence which accumulates at ~" = 16.8. De Oliveria and Malta 
(1987) have verified that the rate of  bifurcation is close to the universal 
Feigenbaum value of  ~ = 4.6692 . . . .  

For ~-> 16.8 numerical  solutions show chaotic attractors interspersed 
with windows of periodic behavior  where stable limit cycles are found. 
Figures 6a and 6b show chaotic attractors for two parameter  values ~" = 19.8 

Fig. 6. 

(a) Cb) 

o l  ~ I t I 

0 .3370  J.. 3550 O. 2240 1 .3780  

X (L-T) X (L-T) 
Phase space evolution with a =0.2,  b = O . l ,  c =  10, and  (a) z =  19.8 and (b) r e 3 0 ,  

where r is the delay parameter.  
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Fig. 7. Power spectra corresponding to Figure 6. Each spectrum was obtained from the 
average of 100 individual FFTs each of sample length 8192 taken at intervals At = 3.0. These 
plots are on a semilog scale. 

a n d  30.0, and  F igure  7a and  7b show the i r  c o r r e s p o n d i n g  b r o a d b a n d  p o w e r  
spect ra .  A b r o a d b a n d  p o w e r  s p e c t r u m  is charac te r i s t i c  o f  chaos  and  shows 
the  sensi t ive d e p e n d e n c e  on ini t ia l  cond i t ions .  The  p h a s e  space  p lo t  at 
r = 30 is c o n s i d e r a b l y  more  c o m p l i c a t e d  and  the p o w e r  spec t rum conta ins  

less p r o n o u n c e d  peaks .  
I n f o r m a t i o n  abou t  the s t ruc ture  o f  these  chao t i c  a t t rac tors  can be 

o b t a i n e d  by  us ing  the Poincar6  m a p  (or  sur face  o f  sect ion)  technique .  This 
enta i l s  p lo t t ing  X ( t -  r) aga ins t  X(t-2r)  wheneve r  X(t) = const ,  which  is 
a rb i t ra ry ,  and  in this  case we take  it to be 1.05. Shown  in F igure  8a is a 
cross  sec t ion  o f  the  chao t ic  a t t r ac to r  for  r =  19.8. The  s t ructure  wi th in  
s t ructure  is c lear ly  a p p a r e n t  in the  en la rgement ,  F igure  8b. In  cont ras t  to 
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Fig. 8. (a) A cross section of the chaotic attractor for ~" = 19.8 and (b) an enlargement showing 

structure within structure. 
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Fig. 9. (a) A cross section of the chaotic attractor for ~" = 30 and (b) an enlargement which 
does not show structure. 

this, the surface of section at ~-= 30.0, Figures 9a and 9b, does not show 
the same self-similarity that was present at z = 19.8. The attractor has a far 
more complicated appearance.  

Each of  the chaotic attractors introduced by the previous examples is 
dissipative and therefore has a contracting phase space area. However,  this 
does not mean that  their dimension is zero; as will be shown in the next 
section, the dimension of the these chaotic attractors is noninteger and less 
than the phase space dimension. 

7. T H E  C O N C E P T  OF D I M E N S I O N  

In this section we give a brief  introduction to the characterization of 
chaotic dynamical  systems in terms of  dimensions. In particular, we examine 
the Lyapunov characteristic exponents (LCE),  the generalized dimension 
spectrum, the f(a) spectrum, and the relationship between them. 

We now elaborate on the meaning of equation (1) by considering a 
one-dimensional  map  of the form 

X , + ,  = f ( X , )  

The LCE can be obtained as follows. The initial point Xo and the point 
Xo+ e will after N iterations be separated by the amount  (Schuster, 1988) 

e : I f N ( X o +  

which in the limit e --> 0 and N --> oo gives the LCE for a one-dimensional map: 

A(Xo)= l i ra I _ ,  [dfN(Xo)l= l~ml~'lnlf,(X,)l 

where f'= df/dX. The LCE measures the exponential  separation of  nearby 
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points (see Figure 10). It is effectively a measure of  the average loss of  
information about the position of  the point. The definition can be generalized 
to multidimensional mappings and continuous systems (Schuster, 1988, and 
references therein). 

The spectrum of  LCE has proven to be one of  the most useful dynamical 
tools for the examination of chaotic systems. The LCE measure the average 
exponential divergence of nearby trajectories when they are positive and 
the average convergence rate when they are negative. There is one charac- 
teristic exponent for each phase space dimension of the dynamical system. 
The spectrum of  LCE provides a useful means of classifying attractors. For 
example, a three-dimensional system of  ordinary differential equations with 
all negative exponents is a fixed point and the LCE spectrum is denoted 
by ( - , - , - ) .  A spectrum ( 0 , - , - )  indicates that the attractor is a limit 
cycle. Thus, (+, 0 , - ) ,  for example, would indicate a chaotic attractor in 
three-dimensional phase space. A positive exponent is a necessary condition 
for chaos. In Table I we list the LCE spectra for each of  the three systems 
we have examined above. 

Numerical evidence supports the following conjecture by Kaplan and 
Yorke (1979) for relating the LCE spectra to the fractal dimension: 

DL=j-~ IAj+I[ 

where it has been assumed the Lyapunov exponents are ordered, A1 > -  �9 �9 > 
Au, and j is the largest integer so that A1 + .  �9 .+Aj->0. The quantity DL is 
referred to as the Lyapunov dimension. Based on the above conjecture a 
fixed point has dimension zero and a limit cycle has dimension one. Chaotic 
attractors usually have noninteger dimensions, as is apparent from the DE 
values listed in Table I for the H6non, Lorenz, and Mackey-Glass systems. 
The LCE spectrum for the Mackey-Glass system consists of  an infinite 
number of Lyaponov exponents of  which the most positive are listed in 
Table I. The Lyaponov dimension D L of  the Mackey-Glass chaotic attractors 
at delay parameter T = 19.8 and r = 30 is 2.27 and 3.58, respectively. Farmer 
(1982) has shown that the dimension increases monotonically within ~" and 
for r = 350.the dimension is of  the order of  20. 

Most definitions of  dimension use the notion of  partitioning phase 
space into boxes of  size L Suppose that there is an attractor in phase space 

N iterations ee.~CXo) 

X e Xo + E fN(xo) fS(Xo§ ~) 

Fig. 10. The separation of neighboring points X o and Xo+e after N iterations is 
fV(Xo+e)-fN(Xo). 
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Table I. 

Heffernan et  al .  

Estimates of the LCE Spectrum, the Lyaponov Dimension DE, and the Correlation 
Dimension D 2 for the H~non, Lorenz, and Mackey-Glass Systems 

Attractor Type LCE spectra DL D2 

Henon Map: 
Fixed point a < ar 
Chaotic a = 1.40 

Lorenz: 
Fixed point r = 5.0 
Limit cycle r = 280 
Chaotic r = 21 

Mackey Glass: 
Chaotic ~-= 19.8 
Chaotic ~- = 30.0 

(-, -)  o.o o.o 
(.42, -1.62) 1.26 1.24 

(-.29, -.29, -4.41) 0.0 0.0 
(0, -2.49, -2.51) 1.0 1.0 
(0.41, 0, -5.41) 2.08 2.06 

(.0077, 0, -.029, -0.39, . .)  2.27 2.21 
(.0069,.0023,0, -.015, - .024, . . )  3.58 3.11 

and the trajectory X(t)  is in the basin of  attraction. The state of  the system 
can be measured at intervals of  time r. We define probabilities 
P(il, i2, . . . ,  id ) to be joint probabilities that X (  t = r) is in box il, X (  t = 2~') 
is in box i2 . . . .  , and X(t  = dr) is in box id. The conventional definition for 
the dimensional spectrum Dq is 

1 ln~,i ...... id Pq(il, i2,-.  id) 
Dq = ~ _  1 lim " '  (9) 

l~o In I 

Typical chaotic attractors are multifractal (Hentschel and Procaccia, 
1983) in that their dimension Dq varies with the index q, where q ~ ( -co,  +oo), 
thus providing a spectrum of Renyi dimensions. The generalized dimensions 
are exponents that characterize the nonuniformity of  the attractor: positive 
q 's  give information on the denser regions of  the attractor and negative q's  
give information on the rarer regions. 

The most  frequently used dimensions are the Hausdorff  (also known 
as the Kolmogorov capacity) dimension Do, the information dimension 
D1, and the correlation dimension D2 (Grassberger and Procaccia, 1983 a, b). 
Do and D~ are obtained in the limits q--)0 and q--)1, respectively. For 
the total set of  generalized dimensions it can be shown (Hentschel and 
Procaccia, 1983) that Dq<Dq, if  q'<q. Numerical  evidence suggests 
that the Lyapunov dimension DL is an upper  bound on the information 
dimension D~. 

The function Dq can be obtained from the generalized correlation 
integral (Pawelzik and Schuster, 1987): 

N---) co 

(lO) 
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where the Heaviside function (9 counts how many pairs of points (Xi, Xj) 
are situated within a distance /. The spectrum of dimensions is then deter- 
mined by 

d[log Cqa(/)] 
Dq = d[log 1] 

as obtained over a sufficiently linear scaling range. By far the easiest 
dimension to compute is the correlation dimension D2. In order to clarify 
the application of the correlation integral, we obtain the correlation 
dimension for the H6non mapping of equation (2). In Figure 11 we plot a 
graph of log Cd(l) vs. log l, from which the correlation dimension D 2 c a n  

be obtained. The time series consisted of 12,000 consecutive iterations of 
the map for the parameters a = 1.4 and b = 0.3 corresponding to the strange 
attractor of Figure 2a. For increasing embedding dimension d the slope of 
the linear region in Figure 1l converges to O 2 = 1.22 +0.02, in agreement 
with Grassberger and Procaccia (1983c). Similar calculations have given 
the values of/92 for the Lorenz and Mackey-Glass systems and these are 
tabulated in Table I. In all cases the Lyapunov dimension D E is an upper 
bound on the correlation dimension/92. 

One of the most important measures by which chaotic motion in spaces 
of arbitrary dimension can be characterized is the Kolmogorov entropy 
(Kolmogorov, 1959). It measures the average rate at which information 
about the state of a dynamical system is lost with time and is defined by 
analogy to the information entropy of Shannon (Shannon and Weaver, 

R I I I I I I I I I+++ ~ 
++ ~+ _+ -I ++T ++-r++~l 

'+ ++ ++ �9 +4 I ++++ ++++.+.+~+~ 
r-I - +++++ ++++• + +  . + + + +  ,+ - r++~ .+~+  

++++~.+~ - 

+++- 
"++, + +  

+++++ !+~" -- 

~I-.++ + +-+ ~+++ �9 I 4" + + + ' l ' _ + T +  

II ~.++k + I I I I I i i 

- t 3 . 8 t 4 0  - 0 .  3453  
log (I) 

Fig. 11. Correlation integral log Ca2(l) vs. log 1 for the H6non map  with parameter  values 
a = 0.3 and b = 1.4. The different results are for different embedding  dimensions,  namely d = 2 
(top curve), 4, 6, 8, and 12 (bottom curve). 
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1949; Schuster, 1988): 

K = - l i r a  lim lira 1 y P ( i ~ , . . . ,  id) log P ( i l , . . . ,  id) 
7"'-~0 I"~O d-~oo "Ta i l . . . i  d 

K is zero for regular motion, it is infinite in random systems, and it is a 
constant larger than zero if the system displays deterministic chaos. It is 
inversely proportional to the time interval over which the state of a chaotic 
system can be predicted. For one-dimensional maps, K is just the (positive) 
LCE. In higher-dimensional systems, K is the sum of the positive LCE's 
(Pesin, 1977). Just as we generalized the concept of dimension, we can also 
define a generalized K entropy (Schuster, 1988), 

1 1 
K q = - l i m  lim In Y~ P q ( i l , . . . ,  ia) 

l-~O d-,~-d q - 1  il...i d 

The universal properties of strange point sets can be powerfully 
catalogued by the Legendre transform f ( a )  of the Dq (Halsey et al., 1986): 

~(q) =~q  [(1 - q)Dq] ( l la)  

f(c~) = qa(q)  - (q - 1)Dq ( l ib)  

Using the qth-order correlation integral equation (9), we can calculate Dq 
and therefore the f ( a )  spectrum. The universal function f ( a )  characterizes 
the static distribution of points on the attractor with singularities of strength 
a. In Figure 12 we show the probability distribution of points on the Hrnon 
attractor of Figure 2a. The full complexity of the scaling structure at the 
onset of chaos (Halsey et al., 1986) through to fully developed turbulence 
(Chhabra et al., 1989; Meneveau et aL, 1990) is contained within the con- 
tinuous spectrum of exponents ~ and their densities f(t~). These scaling 
functions are easier to use than the scaling functions introduced by Feigen- 
baum (1978, 1979) to describe the onset of chaos, which are nowhere 
differentiable and hence are very difficult to use. These considerations and 
in particular the global universality of the f(t~) spectrum have made the 
determination of f(o~) spectra for physical systems (both theoretical and 
experimental) a major industry. 

The function f(t~) has the following universal properties: 

d f  d2f  
~aa=q and d a 2 < 0  (12) 

from which it follows that Do =fmax, D-w= Otmax, and D+~= arnin. Thus, 
for any attractor the curve f (o0  will be convex with a single maximum at 
q = 0 and with infinite slopes at q = +~.  

All the above functions are related. Both the generalized dimension 
Dq and entropy Kq can be obtained from the generalized correlation integral. 
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Fig. 12. The probability distribution of points on the H4non attractor of Figure 2a. 

It can be shown that (Schuster, 1988) 

lim lira log C~(1)  -- (q - 1)Dq In l +  d ( q  - 1)Kq 
l~0 d-~oc 

Hence, given a time series generated from computer simulation or from an 
experiment, a plot of log C~ vs. log I for fiXed q and different values of d, 
will give us Dq from the slope of the lines and in the limit of large d these 
lines will converge on the y axis to give Kq:. From the Legendre transform 
of Dq we can then obtain f ( a ) .  In theory, then, given experimental or 
computer-generated data, a reasonable characterization of chaos within a 
system can be achieved. In practice, noise and insufficient data sets, among 
other things, make this a difficult task. 

8. CONCLUSION 

We have given a brief introduction to the field of study known as chaos. 
To illustrate the fundamental ideas involved, we reviewed three classic 
systems displaying chaos, namely, the H6non, Lorenz, and Mackey-Glass 
systems. Concepts necessary to characterize chaos, such as dimension, f ( a )  
spectra, and entropy, were reviewed. The characterization of chaos is funda- 
mental to physics and this brief introduction we hope will serve to bring 
scientists and engineers in touch with recent developments. 
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